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A B S T R A C T   

The recently described biological framework of Alzheimer’s disease (AD) emphasizes three types of pathology to 
characterize this disorder, referred to as the ‘amyloid/tau/neurodegeneration’ (A-T-N) status. The ‘neurode-
generative’ component is typically defined by atrophy measures derived from structural magnetic resonance 
imaging (MRI) such as hippocampal volume. Neurodegeneration measures from imaging are associated with 
disease symptoms and prognosis. Thus, sensitive image-based quantification of neurodegeneration in AD has an 
important role in a range of clinical and research operations. Although hippocampal volume is a sensitive metric 
of neurodegeneration, this measure is impacted by several clinical conditions other than AD and therefore lacks 
specificity. In contrast, selective regional cortical atrophy, known as the ‘cortical signature of AD’ provides 
greater specificity to AD pathology. Although atrophy is apparent even in the preclinical stages of the disease, it 
is possible that increased sensitivity to degeneration could be achieved by including tissue microstructural 
properties in the neurodegeneration measure. However, to facilitate clinical feasibility, such information should 
be obtainable from a single, short, noninvasive imaging protocol. We propose a multiscale MRI procedure that 
advances prior work through the quantification of features at both macrostructural (morphometry) and micro-
structural (tissue properties obtained from multiple layers of cortex and subcortical white matter) scales from a 
single structural brain image (referred to as ‘multi-scale structural mapping’; MSSM). Vertex-wise partial least 
squares (PLS) regression was used to compress these multi-scale structural features. When contrasting patients 
with AD to cognitively intact matched older adults, the MSSM procedure showed substantially broader regional 
group differences including areas that were not statistically significant when using cortical thickness alone. 
Further, with multiple machine learning algorithms and ensemble procedures, we found that MSSM provides 
accurate detection of individuals with AD dementia (AUROC = 0.962, AUPRC = 0.976) and individuals with 
mild cognitive impairment (MCI) that subsequently progressed to AD dementia (AUROC = 0.908, AUPRC =
0.910). The findings demonstrate the critical advancement of neurodegeneration quantification provided 
through multiscale mapping. Future work will determine the sensitivity of this technique for accurately detecting 
individuals with earlier impairment and biomarker positivity in the absence of impairment.   

1. Introduction 

One in three seniors dies with dementia, and Alzheimer’s disease 

(AD) is the most common cause of dementia in older adults in the U.S. 
(Alzheimer’s Association., 2021) AD begins potentially a decade or more 
prior to the time when clinical symptoms are apparent (Jack et al., 2013; 
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Bateman et al., 2012; Jack et al., 2010; Buchhave et al., 2012; Jack et al., 
2011; Caroli and Frisoni, 2010; Jack et al., 2012; Förster et al., 2012; 
Landau et al., 2012), therefore, clinical symptomatic identification of 
AD is relatively late in the pathologic process and at a time when novel 
therapeutics will be less effective. Recent work aims to detect AD early 
after pathology is initiated, well in advance of clinical expression of 
symptoms. A commonly used biological framework for AD, ‘A-T-N’, 
references brain patterns of amyloid, tau, and neurodegeneration, 
respectively. The primary validated AD-defining biomarkers, amyloid 
and tau, can be quantified through lumbar puncture cerebrospinal fluid 
assay or by positron emission tomography (PET) using radiotracers that 
target these abnormal proteins. Amyloid and tau can be detected early in 
AD pathogenesis with these promising techniques, yet these measures 
are currently limited for routine screening given cost and invasiveness 
and they are only possible at specialized clinics. Neurodegeneration 
measures from imaging are associated with disease severity and prog-
nosis (Benvenutto et al., 2018; Brickman et al., 2018; Aziz et al., 2017), 
and MRI is an alternative tool to assess AD neurodegeneration, which is 
safe, non-invasive, and more accessible in clinical settings. Advances in 
brain imaging with machine learning techniques made it possible to 
identify individuals with AD dementia or mild cognitive impairment 
(MCI) (Belathur Suresh et al., 2018; Cho et al., 2012; Suk et al., 2014; 
Sarraf et al., 2019; Bloch and Friedrich, 2021; Lin et al., 2018; Li et al., 
2021; Guo et al., 2017; Ye et al., 2012; Gao et al., 2020; Shi et al., 2018; 
Liu et al., 2014; Wolz et al., 2011; Lu et al., 2018; Sørensen et al., 2016; 
Popuri et al., 2020; Sun et al., 2017; Tong et al., 2017; Allison et al., 
2019; Noor et al., 2019; Choi et al., 2020; Zhang et al., 2011; Westman 
et al., 2012; Park et al., 2017; Davatzikos et al., 2008; Desikan et al., 
2009; Sørensen et al., 2017; Zhu et al., 2017; McEvoy et al., 2009; 
Magnin et al., 2009; Mattsson et al., 2019; Janghel and Rathore, 2021) 

using fairly routine structural MRI procedures and therefore MRI pro-
vides an optimal ‘first pass’ screen of patients. A simple metric such as 
hippocampal volume is sensitive to AD neurodegeneration; however 
hippocampal volume is impacted by a range of conditions and is not 
specific to AD. Alternatively, our group and others have demonstrated 
that high-resolution structural MRI can be used for detection and 
quantification of highly specific patterns of cortical neurodegeneration 
in patients and that these measures are associated with symptoms and 
prognosis, (Cho et al., 2012; Wolz et al., 2011; Salat, 2004; Salat et al., 
2009; Dickerson et al., 2009; Bakkour et al., 2013). For example, we 
used computer models of cortical morphometry to quantify features 
selected from AD ‘cortical signature’ regions (Dickerson et al., 2009) to 
predict patients with AD through simple support vector machine (SVM) 
classifiers (Belathur Suresh et al., 2018). 

Although common morphometric procedures such as cortical thick-
ness and gray matter volumes are typically utilized in structural MRI 
studies, novel microstructural properties are also quantifiable from a 
standard structural T1 image. For example, we have demonstrated that 
tissue signal properties such as gray matter (GM)/white matter (WM) 
contrast are altered with aging (Salat, 2004) and Alzheimer’s disease 
(Salat et al., 2009) and are useful in detecting MCI who progress to 
dementia (Jefferson et al., 2015). We propose to extend this prior work 
through the implementation of a novel multiscale MRI procedure 
allowing quantification of features at both macrostructural (standard 
morphometry such as cortical thickness) and microstructural scales from 
a single T1-weighted structural MR image to quantify brain tissue 
integrity across multiple spatial scales (referred to as ‘multi-scale 
structural mapping’; MSSM). The procedure is highly sensitive and 
could be clinically feasible in future implementations. 

We examined 1) the added value of the MSSM features over tradi-
tional morphometry measured by cortical thickness and hippocampal 
volume, and 2) whether the procedure could be used to identify AD 
patients and to predict MCI to AD conversion. We find that the MSSM 
procedure is more sensitive to regional neurodegeneration than cortical 
thickness alone and is effective in the classification of patients with AD 
dementia as well as individuals with MCI who subsequently progress to 
AD dementia. These new highly sensitive and specific procedures may 
have applications in early screening for enhancing diagnostics. 

2. Methods 

2.1. Participants 

Images were obtained from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI)-2/GO database (https://adni.loni.usc.edu) for 239 
participants. There were 65 participants who were diagnosed with AD 
dementia (age = 75.3 ± 8.3) and 90 age/sex/education-matched con-
trols who are cognitively normal (CN; age = 65–85). 84 were diagnosed 
for MCI (age = 71.4 ± 7.0). Half of the MCI individuals progressed to AD 
dementia within the next 3 years (MCI-C; age = 72.4 ± 7.4) and the 
other half of the MCI did not convert to AD within 3 years (MCI-NC; age 
= 70.4 ± 6.5). The MCI-C and MCI-NC groups were age/sex/education- 
matched. Inclusion criteria for AD and MCI are described in Appendix. 
Demographics are provided in Table 1. Initial investigations suggested 
subtle variation in contrast measures across scanner vendors. Since this 
study is a ‘proof of concept’ to show the effectiveness of the MSSM 
procedure, we, therefore, limited this initial investigation to a single 
MRI manufacturer (however, three scanner platforms were repre-
sented). Limiting data to a single MRI manufacturer and matching 
groups for age, sex, and education level left us reduced sample size. We, 
therefore, tried to keep as many participants as possible and chose not to 
use amyloid or tau biomarkers for filtering subjects in each group. 

2.2. MRI acquisition 

Brain images were acquired with 3D T1-weighted magnetization- 

Table 1 
Participant demographics and clinical characteristics. Only data used for the 
analyses are included in the table.   

AD Controls  MCI-C MCI-NC 

Number of participants 65 90  42 42 
Age (year) 75.3 ±

8.3 
74.1 ±
6.5  

72.4 ± 7.4 70.4 ±
6.5 

Gender (female/male) 24 / 41 33 / 57  21 / 21 21 / 21 
Education (year) 16.0 ±

2.5 
16.6 ±
2.6  

16.6 ± 2.7 16.8 ±
2.2 

Proportion of non- 
Hispanic white 

86.2% 84.4%  100.0% 90.5% 

CDR-SB 4.5 ±
1.9** 

0.0 ± 0.1  2.3 ± 1.1** 0.9 ± 0.4 

MMSE 23.1 ±
2.1** 

29.1 ±
1.2  

27.4 ±
2.1** 

28.5 ±
1.5 

MoCA 16.9 ±
4.4** 

25.9 ±
2.5  

21.0 ±
2.8** 

24.5 ±
2.6 

FAQ 11.8 ±
6.8** 

0.2 ± 0.7  4.6 ± 4.0** 0.8 ± 1.3 

RAVLT Immediate 22.6 ±
8.1** 

46.7 ±
10.5  

28.6 ±
8.2** 

43.1 ±
11.3 

RAVLT Percent 
Forgetting 

87.6 ±
23.5** 

33.2 ±
26.7  

77.5 ±
27.2** 

44.3 ±
33.5 

ADAS-Cog 11 20.1 ±
6.8** 

5.8 ± 3.0  13.8 ±
5.1** 

7.5 ± 2.7 

ADAS-Cog 13 30.3 ±
8.1** 

8.8 ± 4.6  22.1 ±
6.5** 

11.3 ±
4.3 

Abbreviations: AD, Alzheimer’s disease; MCI-C, MCI who progress to AD de-
mentia; MCI-NC, MCI who do not progress to AD dementia in the timeframe of 
follow-up; CDR-SB, Clinical Dementia Rating Sum of Boxes; MMSE, Mini-Mental 
State Exam; MoCA, Montreal Cognitive Assessment; FAQ, Functional Activities 
Questionnaire; RAVLT, Rey Auditory Verbal Learning Test; RAVLT Immediate, 
the sum of RAVLT scores from 5 first trials (Trials 1 to 5); RAVLT Percent 
Forgetting, the score of Trial 5 minus score of the delayed recall then divided by 
the score of Trial 5; ADAS-Cog 11, Alzheimer’s Disease Assessment Scale 11 
cognitive items; ADAS-Cog 13, ADAS-Cog 11 plus a delayed recall task and the 
Digit Symbol Substitution Test. **p < 0.01 for comparisons between AD and 
controls or between MCI-C and MCI-NC. 
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prepared rapid gradient-echo (MP-RAGE) using 3 T MRI scanners. Data 
were collected from 33 imaging sites that use Siemens Skyra, Verio, or 
TIM Trio. Imaging followed ADNI-2 protocols and the parameters used 
are TR = 2300 ms, TE = 2.98 ms, flip angle = 9◦, voxel size = 1 × 1 ×
1.2 mm3 (Bateman et al., 2012). Fully-sampled data from the initial visit 
were used in the study. 

2.3. MRI preprocessing 

MR images were corrected for gradient non-linearity distortion. 
Then, the B1 non-uniformity correction procedure was applied to cor-
rect non-uniformities in the image intensity. The residual non- 
uniformities were mitigated using N3 bias field correction (Tustison 
et al., 2010), which uses histogram peak sharpening, when necessary. 
Images were warped into a common space for group-level analyses 
(Fig. 1, panel a). 

2.4. Multiscale structural mapping (MSSM) procedure 

Data processing for morphometry and cortical surface mapping fol-
lowed our prior work and other publications describing these proced-
ures (Salat et al., 2011; Fischl et al., 2004; Fischl et al., 2002; Fischl and 
Dale, 2000; Fischl et al., 1999; Dale et al., 1999; Ségonne et al., 2004; 
Fischl et al., 1999) (Fig. 1, panel a). In brief, cortical surface modeling 
was performed using FreeSurfer image analysis suite v5.3 (http://surfer. 
nmr.mgh.harvard.edu) (Fischl et al., 2004; Fischl et al., 2002; Fischl and 

Dale, 2000; Fischl et al., 1999; Dale et al., 1999; Ségonne et al., 2004; 
Fischl et al., 1999). It provides robust gray matter/white matter seg-
mentation to model the surface of the gray matter/white matter inter-
face as well as the gray matter/cerebrospinal fluid (CSF) interface. Once 
the cortical models were complete, several deformable procedures were 
performed for further data processing and analysis including morpho-
metric maps of cortical thickness, curvature, sulcal depth, etc. Cortical 
gray matter tissue signal properties were obtained by creating a set of 
additional surfaces in the interior of the cortical ribbon at different 
depths through the cortical thickness (20%, 40%, 60%, 80%) starting 
from the gray matter/white matter border and projecting towards the 
gray matter/cerebrospinal fluid border. Fig. 2 shows an example of this 
procedure examining the gray/white contrast ratio from multiple sur-
face pairs. White matter intensities were sampled at 5 mm and 1 mm 
subjacent to the gray/white matter border (Fig. 1, panel b). Ratios of 
each pair of surfaces were created for a total of 8 contrast features (4 
gray matter/2 white matter contrast features) at each cortical surface 
vertex (Fig. 1, panel c). Examination of these gray-white contrasts pro-
vide a highly localized normalization of tissue values because the gray 
and white matter intensity from closely neighboring voxels would be 
expected to be similarly influenced by any imaging parameters due to 
the smoothness of the nuisance parameter maps (e.g., field B0/B1 in-
homogeneities) which can be assumed to be smooth relative to the local 
normalization operation. Thus, presenting the intensity values as a ratio 
to bordering intensity values provides a unit that is normalized for the 
local imaging environment. The multilayer sampling procedure allows 
quantification of multiple contrast levels including contrast conserva-
tively close to the gray/white border (20% gray matter/.5mm white 
matter) as well as more remote contrast such as outer gray matter to 
deep white matter (80% gray matter/1mm white matter). After calcu-
lation of the ratio features, values were smoothed with a Gaussian kernel 
of FWHM 5 mm for analysis utilizing a surface-based smoothing pro-
cedure that averages data across neighboring cortical locations. These 
microscale feature maps were integrated with the cortical thickness map 
for the full feature set (Fig. 1, panel d). Fig. 1 illustrates the flowchart of 
the MSSM procedure. 

2.5. Multivariable analysis & AD classification 

Train-test split. Data of AD and controls were randomly split into 80% 
training and 20% test sets. It is critical that train-test split is done at the 
very beginning of all the procedures before data preprocessing, feature 
extraction, and PLS. This allows the test set to be completely held out 
and never seen by any data processing or modeling. The training set was 
again split into training and validation sets, thereby having 60% 
training, 20% validation, and 20% test sets. The following procedures 
for feature extraction and model training were performed using the 
training and validation sets, and the test set was accessed strictly after 
the final model was established and trained. 

Feature selection. The 8 gray/white matter contrasts and cortical 
thickness were used as primary features in the identification of in-
dividuals with AD and differentiation from matched controls. 

Vertex-wise PLS regression. Each feature was normalized to have in-
tensities between 0 and 1. Since we have more variables than observa-
tions and multicollinearity exists between the features, partial least 
squares (PLS) regression was used for dimensionality reduction for each 
vertex. The PLS method is used to find the direction in the feature space 
that explains the maximum variance direction in the diagnosis label 
space (i.e., AD or control). The reduced feature map (one component per 
vertex) was used to train classification models (Fig. 1, panel e). 

Model training. Multiple commonly used machine learning models 
were trained independently and ensembled in the end for final decision- 
making. Models considered in the study are SVM with varying kernels 
(linear, sigmoid, polynomial, radial basis function), neural networks, 
random forest, logistic regression, k-nearest neighbors, and Gaussian 
process. Class labels were binarized and the probability of each class was 

Fig. 1. Flowchart of the proposed MSSM procedure and classification. GM, gray 
matter; WM, white matter; PLS, partial least squares; AD, individuals diagnosed 
with Alzheimer’s disease; CN, cognitively normal controls; MCI-C, MCI in-
dividuals who converted to AD; MCI-NC, MCI individuals who did not convert 
to AD. 
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estimated to enable analyses of receiver operating characteristic (ROC) 
and precision-recall (PR) curve. We trained these models while ac-
counting for the class imbalance by giving each sample a weight 
inversely related to its class’s prevalence (class weights) in the training 
data. For linear models such as linear SVM and logistic regression, the 
loss function was modified by weighting the loss of each sample by its 
class weight. For tree-based algorithms, the class weights were used for 
reweighting the splitting criterion, (King et al., 2001; Pedregosa et al., 
2011). The validation set was used to find hyperparameters that maxi-
mize the classification performance (Fig. 1, panel f). 

Ensemble learning. We randomly initialized and trained each model 5 
times and identified 3 models with the highest average performance in 
the validation set. The primary performance measure we used is the area 
under the ROC curve (AUROC). 4-fold cross-validation was used to 
measure the average AUROC for each weight initialization, thereby 
having 20 AUROC values to be averaged for each model. The top 3 
models were ensembled by averaging the output of the models to form a 
single classifier, which makes the final decision (Fig. 1, panel g). Model 
ensembling is a process to combine the predictions of several learning 
algorithms and is known to yield performance better than a single model 
(Dietterich, 2000). 

Evaluation. The inference was performed on the test set and its per-
formance was reported—i.e., AUROC, the area under the PR curve 
(AUPRC), accuracy, sensitivity, and specificity. We also present ROC and 
PR curves. ROC curve displays a trade-off between the sensitivity and 
the specificity of the features over every possible decision threshold. PR 
curve, a less frequently used plot, on the other hand, displays the trade- 
off between precision (instead of specificity) and sensitivity (i.e., recall). 
PR curves can provide an accurate prediction of future classification 
performance due to the fact that they evaluate the fraction of true pos-
itives among positive predictions, therefore, can be more informative 
when applied to an imbalanced dataset in which the number of 

negatives outweighs the number of positives (Saito et al., 2015) (Fig. 1, 
panel h). 

2.6. Prediction of progression from MCI to AD dementia 

We examined whether the MSSM-based AD classification model 
trained above can be directly used to predict MCI progression to AD 
dementia to determine sensitivity to earlier pathology. The experiment 
used the same processing steps as the AD classification; however, the 
task was to distinguish MCI-C from the matched MCI-NC rather than AD 
from controls. In other words, the model trained on 80% of the AD/ 
control data was tested on the MCI-C/MCI-NC data (Fig. 1, panel i). The 
evaluation procedure was similar to that used for AD classification. 

2.7. Added value of MSSM 

In order to examine the added value of the MSSM features over 
traditional morphometry measured by cortical thickness alone, the same 
procedure was performed with the cortical thickness map. In this case, 
the vertex-wise PLS regression was not needed. Note that not only 
cortical thickness but also MSSM has 1 feature per vertex since it went 
through dimensionality reduction with PLS. Effects of AD on MSSM and 
cortical thickness were analyzed using standard statistical contrast while 
correcting for multiple comparisons. Moreover, we identified regions 
where MSSM is more effective than cortical thickness in differentiating 
AD patients from cognitively intact matched controls using effect size 
analyses. To further validate the added clinical value of MSSM over 
cortical thickness, correlations were sought between the average MSSM 
value in the ‘extra’ regions and cognitive performance measured by FAQ 
within the AD group, in which ‘extra’ regions refer to regions where 
significant AD effects are found with MSSM but not with cortical 
thickness (CT). The correlations were analyzed in three different ways: 

Fig. 2. Microstructural feature map generation 
using a structural T1-weighted image. We 
expanded the intensity/contrast metrics to include 
tissue sampling from multiple points through the 
thickness of the cortical ribbon and subjacent 
white matter to obtain an array of intensity-linked 
features. Gray matter intensities were measured at 
depths of 20%, 40%, 60%, and 80% (surfaces 
between the blue and red) through the thickness 
of the cortical ribbon, starting from the gray/ 
white border (red surfaces) towards the gray/CSF 
border (blue surfaces). White matter intensities 
were measured 0.5 mm and 1 mm subjacent to the 
gray/white border (surfaces underneath the red). 
(For interpretation of the references to color in 
this figure legend, the reader is referred to the 
web version of this article.)   
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1) FAQ vs. mean MSSM extra; 2) FAQ vs. mean MSSM extra controlled 
for mean CT across the brain (y controlled for xall); 3) FAQ vs. mean 
MSSM extra controlled for mean CT across the significant regions (y 
controlled for xsig), where 

y =
1

|MSSMextra|

∑

v∈MSSMextra
MSSM(v),

Fig. 3. Effect of AD on MSSM and cortical thickness using standard statistical contrast. Use of the MSSM features doubled the number of vertices showing a statistical 
difference between AD patients and cognitively intact matched controls (A) compared to traditional cortical thickness measures (B) demonstrating the increased 
sensitivity of the MSSM metric. Note that not only cortical thickness but also MSSM has 1 feature per vertex since it went through dimensionality reduction with PLS. 
The colored regions represent vertices where the FDR-corrected p-value (p*) is lower than 0.05. The images with the threshold of 0.01 for A & B are available in 
Appendix. C & D show regions where MSSM is more effective than cortical thickness in differentiating AD patients from cognitively intact matched controls based on 
effect size analyses. The MSSM features were more effective compared to traditional cortical thickness measures in most regions, thus, only vertices showing a 
statistical difference between AD and controls with the MSSM features are shown at the p* < 0.05 level (C) and p* < 0.01 level (D). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Correlation between the average MSSM value in the ‘extra’ regions and cognitive 
performance measured by FAQ. The ‘extra’ regions refer to regions where sig-
nificant AD effects are found with MSSM but not with cortical thickness (CT). 
The statistical significance was measured at the p* < 0.1 and p* < 0.05 levels.   

MSSM extra at p*<0.1 MSSM extra at p*<0.05  

Pearson Spearman Pearson Spearman 

Mean MSSM extra 
(y)   

γ = 0.33**  ρ = 0.33**  γ = 0.33**  ρ = 0.33** 

Mean MSSM extra 
controlled for mean CT 
across the brain 
(y controlled for xall)   

γ = 0.25*  ρ = 0.27*  γ = 0.25*  ρ = 0.26* 

Mean MSSM extra 
controlled for mean CT 
across significant 
regions 
(y controlled for xsig)   

γ = 0.24  ρ = 0.26*  γ = 0.23  ρ = 0.24* 

* p < 0.05, ** p < 0.01. 

Table 3 
Diagnostic accuracy for AD dementia.  

Features AUROC AUPRC Accuracy Sensitivity Specificity 

RAVLT Immediate  0.947  0.962  0.903  0.824  1.000 
RAVLT Percent 

Forgetting  
0.893  0.931  0.871  0.824  0.929 

Hippocampal 
Volume  

0.899  0.926  0.897  0.938  0.846 

Cortical Thickness  0.920  0.957  0.903  0.824  1.000 
MSSM  0.962  0.976  0.935  0.941  0.929 
MSSM +

Demographic  
0.962  0.976  0.935  0.941  0.929  
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xall =
1

|CTall|

∑

v∈CTall

CT(v),

xsig =
1

⃒
⃒CTsig

⃒
⃒

∑

v∈CTsig

CT(v),

and MSSMextra is a set of vertices where significant AD effects are found 
with MSSM but not with cortical thickness (CT), CTall is a set of vertices 

throughout the cerebral cortex, CTsig is a set of vertices where AD effects 
are significant in CT for each patient. In the classification studies, we 
compared the diagnostic (or prognostic) performance of MSSM with 
models using normalized hippocampal volume (normalized with esti-
mated total intracranial volume (eTIV)) and models using cognitive 
performance (e.g., RAVLT Immediate and RAVLT Percent Forgetting, 
which are known to have a strong association with AD and progression 
from MCI to AD (Estévez-González et al., 2003; Wang et al., 2011; 

Fig. 4. Receiver operating characteristic 
(ROC) curve (A) and precision-recall (PR) 
curve (B) in the prediction of AD patients 
using the MSSM features. They illustrate the 
model’s performance on the held-out test set. 
Performance metrics of the cortical 
thickness-based model are also shown. The 
ROC curve shows a trade-off between the 
sensitivity and the specificity; and the PR 
curve describes the trade-off between preci-
sion (i.e., positive predictive value) and 
recall (i.e., sensitivity) over all possible de-
cision thresholds.   

Fig. 5. Clinical biomarkers of misclassified individuals in the detection of AD patients. Individuals in the test set are represented as pink circle and those in the 
training set are represented as dark-gray. cAD = correctly classified AD (true positive; ADNI diagnosis = AD; model prediction = AD), mAD = misclassified AD (false 
negative; ADNI diagnosis = AD; model prediction = Control), cCN = correctly classified control (true negative; ADNI diagnosis = Control; model prediction =
Control), mCN = misclassified control (false positive; ADNI diagnosis = Control; model prediction = AD), * p < 0.05, *** p < 0.005. 
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Gomar et al., 2014; Moradi et al., 2015)). Lastly, we examined whether 
adding demographic features—i.e., age, gender, education, race, and 
ethnicity—to MSSM helps in diagnostic performance. 

3. Results 

We first examined the added value of the MSSM features over 
traditional morphometry measured by cortical thickness alone in stan-
dard statistical group comparisons of AD compared to control partici-
pants. Use of the MSSM features doubled the number of significant 
vertices differentiating AD patients from controls compared to cortical 
thickness—71% of the total vertices significant for MSSM compared to 
30% significant with cortical thickness using a threshold of p* < 0.05 
(see Fig. 3). MSSM increased sensitivity to regions considered to 
degenerate in later stages of Alzheimer’s disease such as the frontal 
cortex. 

The MSSM values in the ‘extra’ regions were significantly correlated 
with cognitive performance measured by FAQ, linearly (Pearson corre-
lation) and/or monotonically (Spearman correlation; Table 2). 

We identified the most important feature at each vertex in the PLS 
analysis. Among the 9 features (8 GM/WM contrast features and cortical 
thickness), cortical thickness was the most important feature in 37% of 
the vertices and GM 20%/WM 0.5 mm in 31% of the vertices. It was 
followed by GM 20%/WM 1.0 mm, GM 40%/WM 0.5 mm, GM 80%/WM 
0.5 mm, GM 40%/WM 1.0 mm, GM 60%/WM 0.5 mm, GM 80%/WM 
1.0 mm, and GM 60%/WM 1.0 mm. 

In the AD classification study, the MSSM features could differentiate 
AD from controls with an AUROC, AUPRC, accuracy, sensitivity, and 
specificity of 0.962, 0.976, 0.935, 0.941, and 0.929, respectively. The 
values were 0.920, 0.957, 0.903, 0.824, and 1.000 when cortical 
thickness was used, and 0.899, 0.926, 0.897, 0.938, and 0.846 when 
normalized hippocampal volume was used. The diagnostic values were 
also compared to neuropsychological values – i.e., RAVLT Immediate 
and RAVLT Percent Forgetting. No benefit was found when de-
mographic features were added to the MSSM features. The diagnostic 
performance is summarized in Table 3. ROC curve and PR curve are 
shown in Fig. 4. Note that decision thresholds can be adjusted to in-
crease either sensitivity or specificity at the cost of the other. The pro-
vided accuracy, sensitivity, and specificity in the table are based on a 
decision threshold chosen to minimize the number of false detection 
(false positives plus false negatives). 

Post-hoc analyses of misclassified individuals revealed that the 
misclassified AD patients (mAD; false negative; ADNI diagnosis = AD, 
model prediction = control) were different from the median of correctly 
classified AD patients (cAD; true positive; ADNI diagnosis = AD, model 
prediction = AD) in multiple biomarkers (Figs. 5 & 6). Statistical tests 

Fig. 6. Structural biomarkers of misclassified individuals in the detection of AD patients. Volume of each brain region was corrected for estimated total intracranial 
volume (eTIV), presented as percentage of eTIV. Individuals in the test set are represented as pink circle and those in the training set are represented as dark-gray. 
cAD = correctly classified AD (true positive; ADNI diagnosis = AD; model prediction = AD), mAD = misclassified AD (false negative; ADNI diagnosis = AD; model 
prediction = Control), cCN = correctly classified control (true negative; ADNI diagnosis = Control; model prediction = Control), mCN = misclassified control (false 
positive; ADNI diagnosis = Control; model prediction = AD), * p < 0.05. 

Table 4 
Prognostic accuracy for AD progression from MCI.  

Features AUROC AUPRC Accuracy Sensitivity Specificity 

RAVLT Immediate  0.853  0.845  0.810  0.857  0.762 
RAVLT Percent 

Forgetting  
0.767  0.714  0.762  0.762  0.762 

Hippocampal 
Volume  

0.834  0.844  0.797  0.842  0.756 

Cortical Thickness  0.887  0.893  0.833  0.857  0.810 
MSSM  0.908  0.910  0.833  0.857  0.810 
MSSM +

Demographic  
0.908  0.910  0.833  0.857  0.810  
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were not possible in the test set because there was only one mAD and one 
misclassified control (mCN; false positive; ADNI diagnosis = control, 
model prediction = AD). Hence, we included both training and testing 
data for these analyses. There were only two mCN, therefore, statistical 
tests (i.e., Mann Whitney U test) were performed only between mAD and 
AD. mAD had greater whole-brain standardized uptake value ratio 
(SUVR) for (Bloch and Friedrich, 2021) 18F-fluorodeoxyglucose (FDG) 
PET (p < 0.05), showed better performance on MoCA (p < 0.005) and 
MMSE (p < 0.005), and had higher education (p < 0.05) compared to 
cAD. Also, the volumes of middle temporal gyrus (p < 0.05) and ento-
rhinal cortex (p < 0.05) in mAD were larger than cAD. Although not 
statistically tested due to the small sample size, the volumes of ventricles 
and fusiform gyrus in mCN were closer to cAD in their medians than the 
correctly classified controls (cCN; true negative; ADNI diagnosis =
control, model prediction = control). The volume of each brain region 
was corrected for estimated total intracranial volume (eTIV), presented 
as a percentage of eTIV in Fig. 6. 

In the MCI to AD progression prediction study, the MSSM features 
could differentiate MCI-C from MCI-NC with an AUROC, AUPRC, ac-
curacy, sensitivity, and specificity of 0.908, 0.910, 0.833, 0.857, and 
0.810, respectively. The values were 0.887, 0.893, 0.833, 0.857, and 
0.810 when cortical thickness was used, and 0.834, 0.844, 0.797, 0.842, 
and 0.756 when the normalized hippocampal volume was used. The 
prognostic values were also compared to neuropsychological values – i. 
e., RAVLT Immediate and RAVLT Percent Forgetting. No benefit was 
found when demographic features were added to the MSSM features. 
The prognostic performance is summarized in Table 4. ROC curve and 
PR curve are shown in Fig. 7. 

Post-hoc analyses of misclassified individuals revealed that the 
misclassified MCI converters (mMCI-C; false negative; ADNI diagnosis =
MCI→AD, model prediction = MCI→MCI) were different from the me-
dian of correctly classified MCI converters (cMCI-C; true positive; ADNI 
diagnosis = MCI→AD, model prediction = MCI→AD) in multiple bio-
markers. mMCI-C were older (p < 0.05; Fig. 8) and had larger volumes of 
whole brain (p < 0.005), hippocampus (p < 0.005), entorhinal cortex (p 
< 0.05), and middle temporal gyrus (p < 0.05) compared with cMCI-C. 
mMCI-C had smaller volume of ventricles (p < 0.05; Fig. 9). The mis-
classified MCI non-converters (mMCI-NC; false positive; ADNI diagnosis 
= MCI→MCI, model prediction = MCI→AD) were different from the 
median of correctly classified MCI non-converters (cMCI-NC; true 
negative; ADNI diagnosis = MCI→MCI, model prediction = MCI→MCI) 
in various biomarkers. mMCI-NC were older (p < 0.05) and showed 
lower CSF Aβ42 (ABETA; p < 0.05) and FDG (p < 0.005) levels compared 
with cMCI-NC, but no statistical difference was found in tau. mMCI-NC 
showed worse performance on MoCA (p < 0.05), FAQ (p < 0.05), , and 

RAVLT Percent Forgetting (p < 0.005; Fig. 8). Also, structural markers 
were consistently worse in mMCI-NC—i.e., the volumes of the whole 
brain (p < 0.005), hippocampus (p < 0.005), entorhinal cortex (p <
0.05), middle temporal gyrus (p < 0.05), and ventricles (p < 0.05). The 
volume of each brain region was corrected for estimated total intra-
cranial volume (eTIV), presented as percentage of eTIV in Fig. 9. 

4. Discussion 

We demonstrated that the proposed MSSM biomarkers from a stan-
dard T1-weighted image increase sensitivity to structural differences 
between AD patients and cognitively intact matched adults and can be 
used to detect patients with AD dementia and patients with MCI who 
progress to AD with a high degree of accuracy. Thus, this procedure may 
provide an optimal metric for the ‘N’ component of the ‘A-T-N’ biolog-
ical framework for AD that is specific for signature patterns of AD 
neurodegeneration. Future applications can implement these proced-
ures to additionally describe heterogeneity in atrophy patterns in 
‘atypical’ AD patients. These measures can be used independently, or in 
a complementary manner to amyloid and tau biomarkers to complete 
the ‘A-T-N’ characterization of individual patients. 

The current results show that there are alterations in tissue signal 
properties in AD patients that provide enhanced information about 
neurodegeneration relative to cortical thickness alone and are distinct 
from the effects of typical aging. Particularly strong effects were found 
in temporal and limbic areas, which is consistent with Salat et al. 2011 
(Fischl and Dale, 2000) that used Open Access Series of Imaging Studies 
(OASIS) data (Dietterich, 2000). The study reported that the effects of 
AD on the gray matter to white matter contrast had unique variance 
relative to changes in cortical thickness alone and although there was 
substantial overlap between the effects, there was also regional differ-
entiation between AD effects on thickness compared to intensity/ 
contrast effects. Although cortical thickness component was most sen-
sitive to group differences across the greatest percentage of vertices in 
our study, the gray 20%/white 0.5 mm contrast measure approached the 
percent vertices that cortical thickness achieved, and the vertices com-
bined across all contrast metrics comprised a greater percentage of the 
total significant vertices than cortical thickness. The MSSM procedure 
that combines the two metrics exhibited substantially broader effects 
while cortical thickness showed more focal but stronger effects in a few 
areas. MSSM features more than doubled significant vertices statistically 
different in AD patients compared to controls relative to cortical thick-
ness measures. The MSSM values in the ‘extra’ regions were significantly 
correlated with cognitive performance, which suggests that MSSM can 
measure AD-related lesions that are not captured by the standard 

Fig. 7. Receiver operating characteristic 
(ROC) curve (A) and precision-recall (PR) 
curve (B) in the prediction of MCI progression 
to AD dementia using the MSSM features. 
They illustrate the model’s performance on 
the held-out test set. Performance metrics of 
the cortical thickness-based model are also 
shown. The ROC curve shows a trade-off be-
tween the sensitivity and the specificity; and 
the PR curve describes the trade-off between 
precision (i.e., positive predictive value) and 
recall (i.e., sensitivity) over all possible deci-
sion thresholds.   
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morphometry. Regions most affected are those known to show early and 
aggressive degeneration from pathology studies48, (Dale et al., 1999). 
However, MSSM additionally highlighted later stage regions in the 
frontal cortex. This suggests that the tissue signal properties can be a 
microstructural marker of pathologic mechanisms that are more pre-
served from cortical atrophy or that have a distinct longitudinal pattern 
in the disease process. 

As a ‘proof of concept’, we used the MSSM features to differentiate 
AD patients from cognitively healthy matched controls and it revealed 
competitive diagnostic performance (AUROC = 0.962, AUPRC = 0.976), 
which is comparable to but slightly higher than our cortical thickness- 
based model that used similar procedures and models based on hippo-
campal volume or RAVLT cognitive test scores. It also outperformed 
models that used one or more MRI features of cortical thickness, 

hippocampal volume, shape, texture, WM hyperintensity, and volu-
metrics, (Cho et al., 2012; Wolz et al., 2011; Sørensen et al., 2016; 
Sørensen et al., 2017; McEvoy et al., 2009), MRI-based convolutional 
neural network (CNN) models, (Lu et al., 2021), and PET-based models, 
(Mattsson et al., 2019; Janghel and Rathore, 2021), and a model 
combining cortical thickness and default mode network functional 
connectivity (Park et al., 2017) even though one-to-one comparisons are 
not possible. Higher performance was reported in studies including the 
ones that combined MRI and PET (Suk et al., 2014), used functional MRI 
data, (Mattsson et al., 2019), and combined MRI with genotype data and 
cognitive performance (Bloch and Friedrich, 2021). Demographic fea-
tures to MSSM did not enhance performance in this sample, which im-
plies that the MSSM features capture the variance of the demographic 
features in most part or that classification performance is ceiling. 

Fig. 8. Clinical biomarkers of misclassified individuals in prediction of MCI to AD progression. CSF Aβ42 (ABETA) values were thresholded at 1700. cMCI-C =
correctly classified MCI converters (true positive; ADNI diagnosis = MCI→AD; model prediction = MCI→AD), mMCI-C = misclassified MCI converters (false negative; 
ADNI diagnosis = MCI→AD; model prediction = MCI→MCI), cMCI-NC = correctly classified MCI non-converters (true negative; ADNI diagnosis = MCI→MCI; model 
prediction = MCI→MCI), mMCI-NC = misclassified MCI non-converters (false positive; ADNI diagnosis = MCI→MCI; model prediction = MCI→AD), * p < 0.05, ** p 
< 0.01, *** p < 0.005. 
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We also used the MSSM features to predict MCI patients who prog-
ress to AD dementia within 3 years and it showed prominent prognostic 
performance (AUROC = 0.908, AURPC = 0.910), which is comparable 
to but slightly higher than the cortical thickness-based model that used 
similar procedures and models based on hippocampal volume or RAVLT 
cognitive test scores. It also outperformed models that use one or more 
MRI features of cortical thickness, hippocampal volume, and volumetric 
features, (Sørensen et al., 2016; Popuri et al., 2020; Zhu et al., 2017), 
MRI-based CNN models, (Gao et al., 2020; Lu et al., 2018), a model that 
combines MRI, genotypes, and gene expression profiles (Li et al., 2021), 
a model combining MRI morphometrics, CSF and cognitive measures 
(Ye et al., 2012), and models using PET or PET combined with MRI, (Liu 
et al., 2014; Lu et al., 2018; Zhu et al., 2017). Higher performance was 
reported in a few studies that used longitudinal MRI, (Sun et al., 2017) 

and that combined MRI with cognitive performance (Tong et al., 2017). 
This work demonstrates the possibility to use this technique, which re-
quires only a single T1-weighted MRI, in diagnostic support clinically, as 
well as to screen individuals who are likely to be a candidate for more 
intensive biomarker assessment. Future work will apply the MSSM 
procedures in individuals with earlier impairment and/or pathology 
stages, MCI with conversion to other types of dementia, and preclinical 
at-risk individuals (Li et al., 2021) to determine the benefits of these 
novel features. 

The analyses of the misclassified individuals in the AD classification 
study showed that the misclassified AD participants (mAD)—i.e., ADNI 
diagnosis = AD; model prediction = Control—looked more like controls 
than the correctly-classified AD (cAD) in multiple biomarkers (Figs. 5 & 
6). It may suggest that misclassification of AD can be due to clinical 

Fig. 9. Structural biomarkers of misclassified individuals in the prediction of MCI to AD progression. Volume of each brain region was corrected for estimated total 
intracranial volume (eTIV), presented as percentage of eTIV. cMCI-C = correctly classified MCI converters (true positive; ADNI diagnosis = MCI→AD; model pre-
diction = MCI→AD), mMCI-C = misclassified MCI converters (false negative; ADNI diagnosis = MCI→AD; model prediction = MCI→MCI), cMCI-NC = correctly 
classified MCI non-converters (true negative; ADNI diagnosis = MCI→MCI; model prediction = MCI→MCI), mMCI-NC = misclassified MCI non-converters (false 
positive; ADNI diagnosis = MCI→MCI; model prediction = MCI→AD), * p < 0.05, ** p < 0.01, *** p < 0.005. 
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mislabeling of AD patients with etiologies other than AD or AD atrophy 
variants. The former hypothesis is less likely given that mAD showed 
positive amyloid PET. Given that the prediction models are created from 
group maps, any AD that is not classified correctly must by definition 
have a substantially different pattern of degeneration than is typical for 
the group. Further investigation is needed to analyze individual cortical 
atrophy patterns for mAD. The use of the MSSM biomarkers showed a 
12%-point increase in sensitivity but a 7%-point decrease in specificity 
based on the chosen decision thresholds, therefore, it is difficult to argue 
that the proposed methods are always preferred. However, it is critical 
to note that performance is based on clinical labels, and these labels may 
include misdiagnosis (Belathur Suresh et al., 2018). There was one 
misclassified control (mCN) in the training set and test set each. The 
volume of their ventricles and fusiform gyrus were closer to cAD than 
the correctly-classified controls (cCN); however, it was difficult to 
explain the cause of the false positives with other biomarkers (Figs. 5 & 
6), thus it may suggest a need for further model optimization to improve 
specificity. Alternatively, it is possible that MSSM is overly sensitive to 
pathology generically (including non-AD pathologies). We are inter-
ested in exploring this concept further with more data in future work. 

In the MCI to AD progression study, we observed that the mis-
classified MCI converters (mMCI-C) were younger, had better brain 
based on volumetrics, and better learning performance than the 
correctly-classified MCI converters (cMCI-C; Figs. 8 & 9). This is 
potentially suggestive of conversion due to other factors. For example, 
an mMCI-C individual with the smallest ventricular volume had signif-
icantly enlarged perivascular spaces that seemed atypical. The mis-
classified MCI non-converters (mMCI-NC) were older, had worse brain 
based on volumetrics, worse cognition, and higher CSF amyloid level 
than the correctly-classified MCI non-converters (cMCI-NC; Figs. 8 & 9). 
This may suggest that they had early AD, but are protected in some way 
such as mechanisms of resilience against the effects of AD Pathology. 
Note that the misclassifications in both experiments were very low and 
these interpretations are speculative and need further investigation with 
data of more participants. 

Additional studies are necessary to determine the optimal applica-
tion of the MSSM procedure. Although we trained and evaluated the 
model using the data acquired at multiple (33) imaging sites that use 
different scanner models, we limited this initial investigation to Siemens 
scanners only. Thus, in the current form, the procedures may be best 
applied to cohorts that have been scanned using a single protocol. We 
briefly note, however, that performance classifying GE data with the 
Siemens-trained MSSM model was not markedly compromised and 
outperformed the Siemens-trained cortical thickness model in our pre-
liminary analyses. We plan to put significant effort into this procedure to 
assure maximal performance across vendors, hence, do not provide this 
information in this paper except to note that we believe that this pro-
cedure is generalizable. Future studies will explicitly include cross- 
vendor information into the MSSM preprocessing and statistical 
models to enhance generalizability across manufacturers and cohorts. 
The MSSM features may provide an indirect index of tissue micro-
structure but can be impacted by other imaging aspects and we will plan 
to validate these measures against gold standard microstructural mea-
surements. Future studies will add more macrostructural features such 
as mean curvature, surface area, and gyrification index. Also, additional 
studies are needed to include participants of more diverse race/ethnicity 
as well as greater disease heterogeneity, both in stage as well as type. 
With these caveats, we conclude that the MSSM procedure is more 
sensitive for the detection of AD neurodegeneration and is preferable to 
morphometry alone. 
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Dubois, B., Lehéricy, S., Benali, H., 2009. Support vector machine-based 
classification of Alzheimer’s disease from whole-brain anatomical MRI. 
Neuroradiology 51 (2), 73–83. https://doi.org/10.1007/s00234-008-0463-x. 
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